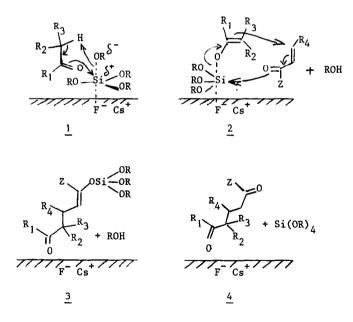
0040-4039/85 \$3.00 + .00 ©1985 Pergamon Press Ltd.

1,4-ADDITION REACTIONS TO METHACRYLAMIDE : A ONE POT SYNTHESIS OF 3,4-DIHYDRO 2(1H)-PYRIDINONES AND 3,5-DISUBSTITUTED GLUTARIMIDES


R.J.P. CORRIU and R. PERZ

Laboratoire des Organométalliques - Equipe de Recherche Associée au CNRS n° 554 Université des Sciences et Techniques du Languedoc, Place Eugène Bataillon 34060 MONTPELLIER Cedex (France)

Summary : Ketones and β -cyano or β -keto esters were found to add directly to methacrylamide in a one pot process in the presence of CsF/Si(OCH₃)₄ to give 1,4-addition compounds.

In previous papers (1-3), we have described the CsF/Si(OCH₃)₄ system as promoting the Michael type reactions (4-6). It reacts selectively and efficiently giving the 1,4-addition of ketones and phenylacetonitriles to α , β -unsaturated ketones, esters and nitriles.

The proposed mechanism involves a nucleophilic activation by fluoride ion giving an extension of coordination at silicon (7,8).

More recently (9), CsF/Si(OCH₃)₄ was successfully used for 1,4-addition reactions to α , β -unsaturated tertiary amides. We now report (see Table) the results

concerning the 1,4-addition of ketones and β -cyano or β -keto esters to methacrylamide when CsF/Si(OCH₂), was used in the same conditions as before. In this case, the Michael type reaction occurs and is followed, in situ, by the cyclisation, leading to 3,4-dihydro 2(1H)-pyridinones or 3,5-disubstituted glutarimides.

or

Δ

The typical procedure is the following one : synthesis of 3-methyl 5,6-diphenyl 3,4-dihydro 2(1H)-pyridinone.

25 mmol of methacrylamide $CH_2 = C - C < NH_2$, 25 mmol of phenylacetophenone are added to CH_3

15 mmol of Si(OCH₃)_{Δ} and 20 mmol of CsF under nitrogen atmosphere. The mixture was stirred and heated at 80°C for 5 hours. Hydrolysis was not necessary and the mixture was extracted with CH₂Cl₂ and the crude product was recrystallized from ethyl acetate (m p : 157°C).

Even, if some ketones (cyclohexanone, methyl isopropyl ketone, 2,4-pentanedione) give mixtures, in many cases this method allows the formation of the pure cyclic compound in a one pot process, without hydrolysis and in good yields while stepwise reactions are usually necessary (10).

The mechanism we propose is the one previously indicated : nucleophilic activation of Si(OCH₂)₄ by the fluoride ion giving a basic species which promotes enolate formation. The fast silylation of this enolate gives the silyl enol ether which promotes the 1,4 adduct on the α,β -unsaturated primary amide. This compound reacts in situ with the alcohol present in the mixture to give the 1,5-difunctionnal compound. This primary amide undergoes a fast cyclisation in situ and the final product is isolated by recrystallisation.

Electrophile	Michael donor	Reac condi	tions	Isolated product	Yield(%)
Сн ₂ =с-с ₹ ⁰ _{NH2} сн ₃	^с 6 ^н 5 ^{-с-сн} 3 0	t(h) 2	<u>T°C</u> 80	HN C_6H_5 (a)	55
11	^{С6^Н5^{-СН}2^{-С-СН}3 0}	12	80	$C_6H_5 CH_3$ (a)	46
	сн ₃ -с-сн ₂ -сн ₂ -сн ₂ -сн ₃ о	12	80	HN CH ₃ CH ₃	33
		12	100	HN CH ₃	94
n		12	100	HIN CH ₃	90
11	^с 6 ^H 5 ^{-CH} 2 ^{-C-C} 6 ^H 5 0	5	80	C ₆ H ₅ C ₆ H ₅ CH ₃	76
'n	с ₆ ^н 5 ^{-сн} 2 ^{-с-сн} 2 ^{-с} 6 ^н 5 0	6	80	C ₆ H ₅ CH ₂ -C ₆ H ₅	70
U	^{СН₃-С-СН₂-С-ОС₂Н₅ 0 0}	2	80	HN 0 C ≤ CH ₃ (b)	83
n	NEC-CH2-C-OC2H5 o	12	80	$HN \qquad (c)$	84

Michael additions on methacrylamide in the presence of CsF/Si(OCH3)4

(a) see ref. 13 (b) see ref. 12 (c) see ref. 11.

Elemental analysis and spectral data (IR and NMR) are consistent with the structures of the products.

 - J. BOYER, R.J.P. CORRIU, R. PERZ, C. REYE J. Chem. Soc. Chem. Comm., 122, 1981.
(2) - J. BOYER, R.J.P. CORRIU, R. PERZ, C. REYE Tetrahedron, 37, 2165, 1981
(3) - R.J.P. CORRIU, R. PERZ, C. REYE Tetrahedron, 39, 999, 1983
(4) - I. BELSKY J. Chem. Soc. Chem. Comm., 237, 1977
(5) - J.H. CLARK, J. Chem. Soc. Chem. Comm., 789, 1978
(6) - L.A. CARPINO, A.C. SAU J. Chem. Soc. Chem. Comm., 514, 1979
 (7) - O.W. WEBSTER, W.R. HERTLER, D.Y. SOGAH, W.B. FARNHAM, T.V. RAJANBABI J. amer. Chem. Soc., 105, 5706, 1983
 (8) - R.J.P. CORRIU, G. DABOSI, M. MARTINEAU J. Organometal. Chem. 33, 154, 1978
(9) - C. CHUIT, R.J.P. CORRIU, C. REYE Tetrahedron Letters, 23, 5531, 1982
(10) - J.T. WROBEL, J. CYBULSKI, Z. DABROWSKI Synthesis, 686, 1977
(11) - P. VICTORY, J. DIAGO Afinidad, 354, 161, 1978
(12) - Tetsuko KATO, Masaki NODA Chem. Pharm. Bull. 22(12), 2947, 1974
<pre>(13) - J. BARLUENGA, L. MUNIZ, F. PALACIOS, V. GOTOR J. Heterocyclic Chem., 20, 65, 1983</pre>
(Received in France 28 December 1984)